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We consider the stability of a horizontal layer of a dissociating liquid or gas 
subject to a given vertical temperature gradient. We determine conditions for 
the appearance of stationary and oscillating convection corresponding to an 
arbitrary time for the establishment of local chemical eq~librium, 

Two problems concerning the appearance of convection in a layer of dissoci- 
ating fluid with an arbitrary dissociation time were investigated in [l]. In the 
first of these problems it was assumed erroneously that unlike the temperature 
the degree of dissociation does not depend on the height, although there is 
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“chemical equilibrium”. In the second problem convection was considered in a 
fluid chemically not in equilibrium. In contrast to [l], we study convection when 
the initial degree of dissociation depends on the height, although chemical equi- 

librium is present. We also takr into account the compressibility of the gas. 

1. Dcacrlption of the model, Consider a horizontal layer of a liquid or a 
gas whose molecules or atoms react according to the scheme A 2 B -5 C, the mole- 
cular (or atomic) weights of the components B and C being identical. This type of 

reaction is realized, for example, in the dissociation of a diatomic gas (A, =: A -t A). 
The equation for energy conservation can be written in the form 

pd$fP”v’ --vq (1.1) 

Here ,o is the mass density of the reacting mixture, p is the pressure, v is the momen- 

tum per unit volume, i_J is the internal energy per unit mass, and q is the heat flow. 
The internal energy depends linearly on the temperature T and on a , the relative con- 
centration of the component _6’ (or C) 

(ca is the specific heat capacity for .CL = const, and ci is the specific heat capacity 

for T = conSt). When the heat diffusion and the barodiffusion are inconsequential the 

heat flow is given by 
q: = --ATT - pD,,c,~a 

Throughout the sequel we assume that the coefficients of thermal conductivity A and of 
diffusion D,, are constant. 

For small departures from chemical equilib~um the equation for the relative concen- 
tration assumes the form 

da u - CLe (T) 
dT+ t 

111 FV(L’Va) (1.2) 

Here z is a characteristic time for the establishment of chemical equilibrium and 
‘oe (T) is the equilibrium value of the relative concentration II at the temperature 

which the gas or liquid has in a given volume element. In problems dealing with con- 
vective stability it is necessary to distinguish this temperature from the initial equilib- 

rium temperature. For small temperature drops we can write (4 is a coefficient inde- 

pendent of the temperature and the pressure) 

a, (T) = CL, -t- (i, (To + 1”) 

Here and in the sequel an arbitrary quantity f is written in the form 

(1.3) 

f (f, y, 2; t) = f, + fn (z) f f’ (x, YIt z; t) 

The subsqipt m means that the value of f is taken (for definiteness) at the lower bound- 
ary of the layer ; the coordinate z is reckoned vertically upwards from the median lay- 
er ; and x, y are horizontal coordinates. 

bet us assume that the temperature on each boundary remains constant and d is the 
layer thickness, we have 

+-+T, 

We can choose the chemical composition on the boundaries z = &d/2 to be in equi- 
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librium and, by virtue of Eq. (1.3). we can assume it to be constant ; for simplicity we 
choose the boundaries to be “free” [2] 

u, = Pv, / dz2 = 0 for 2 = *d/2 

For the equilibrium state (d/c& = 0 = u, a = a,) it follows from Eqs. (1.1) and 
(1.2) and from the conditions of mechanical equilibrium (g = (0, O,- g) is the free- 
fall acceleration) that 

(1.4) 

To=r(z+di2) (7 = const) 

It is evident from (1.3) that the thermochemical equilibrium value must conform to the 
linear law 

a, = 4~ (2 + d / 2) (1.5) 

If we assume that the characteristic scale of variation of all the quantities is consider- 

ably larger than the thickness d of the layer, it becomes convenient to introduce the 

small parameter E = d / Dmin, where Drntn is the smallest of the quantities 

Upon retaining terms of order e0 and at, we see that the relation (1.5) satisfies the first 

of the equations (1.4). 
In what follows we can use an equation of state written in the linearized form (pi,2 

are the thermal and concentration contraction coefficients, and 8s is the compressibility 
coefficient) 

p~=~,(T--T,)+p,(a-a,)+P3(P--Pm) 

2. Dlrper,ion relation, If we use the Boussinesq approximation in the mo- 
mentum conservation equation we can retain only one term of order E , the term corre- 

sponding to the buoyancy force [3] (Y is the coefficient of kinematic viscosity) 

From Eq. (1.1) we obtain 

$ (Q” + ~,‘a’) + vzy (cp + QC,‘) - gv, = -$ AT’ + Dnclh' (2.2) 

In the sequel we assume that 

conform to the equation 
ad 
-ST+ 

Cl ’ % cr. Small changes in the relative concentration 

@,rvZ + a’ -,aT’ = D,,Aa’ (2.3) 

by virtue of the relations (1.2) and (1.3). Equations (2.1) - (2.3) together with the 
incompressibility condition, form a closed system with the boundary conditions described 
above. The horizontal homogeneity of the medium and the linearity of the equations 
makes it possible to seek dynamic perturbations in the form 

f’ = F (z)esp (ikr + ot) 
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where r and k are, respectively, the radius vector and the wave vector in the horizontal 
plane. The resulting linear equations for the amplitudes F reduce to a system contain- 
ing the operators d’” / dz’” for even 72 only ; on the boundaries these derivatives are 
equal to zero, therefore 

F cu sin [mz (2 / d + ‘/Al m -1 ,2, :;, . . . 

Using this relation, we can obtain the dispersion equation 

AC9 + aA + [b + $ (R p1 -‘pj?:+ - R,)] 5 + (2.4) 

where 

a = q / (cpQ - A (1 + S-’ + P-l), A = n2 + Z2 

b = A3 (P-l + P-W1 + S-1) - h2CT (1 + P*-1) / (c&) 

Q = @I + LO) / (BJ) - fI / S, x = h / @-nCp) 

R, = g2Ld4/ Wp), P, = Wo, ~0 = (A + ~&‘12~,@) / h~rn4 

R = yp,gd” / (w), P = v lx, S = v/D,, 

(a, E, t are, respectively, the dimensionless frequency, wave number, and dissociation 
time ; R, P, S are, respectively, the Rayleigh, Prandtl, and Schmidt numbers). 

3. Conditiona for the rirs of convection. We clarify,first of all,whe- 
ther it is possible to have oscillating convection in the system. Let G = or f ial- 

According to (2.4) a departure from the neutral state (or = 0) can be accompanied by 
oscillations if the equations 

4~=b++[R(l+~~-R.+] 

Aaa,” -: ;(Rr, - qR,) + A3 ($&- $) 

(3.1) 

(3.2) 

are satisfied by real values of cri and R. 
It is known that stationary convection does not arise if R < Rot*‘), where K,(“‘) is 

the minimum of the function R @‘) (8, equal, according to the dispersion relation, to 

x (3.3) 

The convection can only be oscillating if fi > Ro(0), where Rot01 is the minimum of 
the function R(o) (L2), obtained by solving the system (3.1) and (3.2) for R 

R(o) = {-A(1 f P, -1) x2 + 11 + ,%I -t (S-l + P-1) (P*-l +1)l x (3.4) 

h2x - A3 IS-’ + P-l) (1 + M) + [(R, / A) (pep / CT - 1) x + 

A(P-’ + I)] 12P-1) k2P (P-l -t p + (p - 1) S-ll-l 

fif = p-1 + p-IS-1 + s-1 
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The frequency oi of the oscillations in the neutral state is given by 

Gi = 3 (li - l)(p-’ - s-l) - ,\2 [v + (/J - 1,qj + (3.5) 

JJ [/l (/,I - 1) 2 - .1p (P;’ - M) -+ ,I (P;‘+ 1) (s-1 + l+] - 

and satisfies the relation 
oi2a f x z RW - RON (3.6) 

4, Resulta, 4.1. Convection for instantaneous establishment 
of chemical equilibrium. Letting r -+ 6 in Eqs. (3.3) and (3.5) shows that 
oscillating convection cannot develop, and the condition for the rise of stationary con- 
vection assumes the form 

This relationship is entirely analogous to the ordinary criterion for the convective stabi- 
lity of a gas since /3r -+ j3&, g / CT and xs are, respectively, the effective coeffici- 
ents of contraction, adiabatic temperature gradient, and. thermal diffusivity in a quasi- 
equilibrium state of the dissociating gas. 

4.2. Binary mixture (r--t CO). In this case the sign of the parameter Q 
determines the sign of the concentration gradient : y2 = @yl. The stability conditions 

are the same as the conditions obtained in [4] for the case of two free boundaries, except 
that R must be replaced by R - R,. 
4.3. Convection in an incompressible fluid. When the density ofthe 

fluid varies in the same way both during an increase in the temperature and with an in- 

crease in the monomer concentration, then no oscillation in the convection is possible : 
the right side of Eq. (3.5) is imaginary when lr > 1 and z -+ oo * and d:i / 8~ < 0 
for 5 > 0. It should then be expected that in chemically unstable fluids with the pro- 

perties enumerated in Sect. 1 the convection is stationary. If. as is usually the case, 
PI < 0, then there is a loss of stability only at sufficient heating from below, 

ln 1s~ a conclusion was derived concerning the loss of stability when a layer of a weak- 

ly dissociating fluid with a small rise time for equilibrium dissociation is heated from 
above. This statement is apparently incorrect since it was obtained from the analysis of 
a system of equations in which the relation 6a = &ST was used everywhere except in 
the momentum conservation equation and in the term (a - a,) f 7 in the equation for 
the relative monomer concentration (analogous to Eq. (1.2) of the present paper). 

From Bqs. (3.3) -(3.6), which are also valid for ~1 < 1, it follows that convection 
is also possible when a layer of a liquid with a finite rise time to chemical equilibrium 
is heated from above. According to (3.3), the function li(“) (P) has the vertical asym- 
ptote 

subject to the condition that either s > P and 
n3 

na+px < S-P 
_-EL<1 (3.7) 
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or P > s and 

1 >L> XB& S-P (3.8) 

Suppose that the conditions (3.7) are satisfied. We can then conclude that for heating 

from above,only stationary convection occurs (according to Eq. (3.4) the necessary con- 
dition for the onset of oscillating convection with heating from above is 

p < (P - Is) P-1 (S + 1)-l 

In the case (3. 8) similar reasoning shows that with heating from below,only stationary 

convection is possible for 1 > I,. For 1 < 1, oscillating convection competes with 
stationary convection in both cases, depending on the way the parameters are related. 

4.4. Dissociating gas, In considering convection in a gas we can use the 
notion of an ideal dissociating gas suggested by Lighthill [6]. It is not difficult to show 

that in this case convection commences only with heating from below : the functions 
K(“f) and R(O) are positive and attain their minima only once for the various 1. It is 

evident from (3.6) that if oi2 ,> 0, then R(O) < RcsL). When 1-t 0 and 1 --t 00 , 
we have H(O) > fi(“l) for arbitrary x . By Descartes’ rule the number of positive roots 

of the equation Ui (12) is limited to two roots. This equation has no positive roots if 
r < T*; we can obtain a rough estimate for the critical value of the relaxation time 

by setting P z s 
r*=%$ 

It follows from this that oscillating convection is only possible in sufficiently thick lay- 
ers of gas (D is the dissociation energy) 

For nitrogen, heated to 6000°K at a pressure of 1 atm (a s 0.1, 7 z 2 x 1O-5 set, 

P 2 0.7; s z 0.5) oscillating convection is not possible in a layer less than 20km thick 
(in the model considered the thickness of the layer must be much less than the height of 
the “homogeneous atmosphere”). The result obtained herz may prove useful in studying 

convective stability of the high temperature planetary atmospheres. 
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